

PROMENADE C1 PROFESSIONAL
EPROM

PROGRAMMER

For the COMMODORE 64 and 128

With PROMOS 2.0 Operating System Software

This manual and the PROMOS 2.0 software program are COPYRIGHT (C) 1988

by J. W. Ranheim. All rights are reserved. Neither this manual nor the PROMOS 2.0
program may be copied, reproduced, transferred, transmitted, disclosed or reduced to
machine-readable form including magnetic or other storage media, without the prior
written consent of the copyright owner, except that a reasonable number of archival
copies of the PROMOS 2.0 software program may be made by the purchaser for his
own exclusive personal use. PROMENADE, PROMENADE C1, PROMOS, and
PROMOS 2.0 are trademarks of Jason-Ranheim Company.

LIMITED WARRANTY

JASON-RANHEIM COMPANY warrants to the ORIGINAL PURCHASER of these

products that they are free from defects in materials and workmanship for a period of
ninety (90) days from the date of purchase. These Jason-Ranheim Company products
are sold 'AS IS' without express or implied warranty of any kind, and Jason-Ranheim
Company is not liable for any losses or damages of any kind resulting from the use of
these products. Jason- Ranheim Company agrees for a period of ninety (90) - days to
repair or replace, at its option, free of charge, any Jason-Ranheim Company product,
postage paid, with proof of the date of purchase at its Factory Service Center. This
warranty is not applicable to normal wear and tear. This warranty shall not be
applicable and shall be void if the defect in the Jason-Ranheim Company product has
arisen through abuse, unreasonable use, mistreatment or neglect. This warranty is in
lieu of all other express warranties and no other representation or claims of any nature
shall be binding on or obligate Jason-Ranheim Company. Any implied warranties
applicable to these products including warranties of merchantability and fitness for a
particular purpose are limited to the ninety (90) day period described above. in no event
will Jason-Ranheim Company, its officers, employees, agents, successors or assigns
be liable for any special, incidental, or consequential damage resulting from the
possession, use or malfunction of these Jason-Ranheim Company products.

JASON-RANHEIM COMPANY

3105 Gayle Lane
Auburn, Calif. 95603

(916) 878-0785

TABLE OF CONTENTS

INTRODUCTION --- 1
GETTING STARTED --- 2
HANDLING EPROM's --- 2
HEXADECIMAL NOTATION -- 2
EPROM’s --- 4
EPROM PINOUT, FIGURE 1 -- 5
ENTERING PROMOS 2.0 COMMANDS -------------------------------- 6
MULTIPLE COMMANDS -- 6
MIXING BASIC AND PROMOS COMMANDS ----------------------- 6
ERRORS --- 7
PROMOS 2.0 COMMANDS -- 7

G COMMAND --- 7
R OR £ COMMAND -- 7

CHECKSUMS AND HASHTOTALS --- 8
WHERE TO PUT THE DATA -- 8

B COMMAND --- 8
HOW BIG A RANGE? --- 9

M COMMAND --- 9
CHANGING RAM DATA -- 10

I COMMAND --- 10
F COMMAND --- 10
T COMMAND --- 10
C COMMAND --- 11
H COMMAND --- 11
D COMMAND --- 12
A COMMAND --- 12
E COMMAND --- 12

P OR π COMMAND -- 12
PROGRAMMING ERRORS -- 14

V COMMAND --- 14
COPYING EPROM’s --- 14

S COMMAND --- 15
L COMMAND --- 15
Q COMMAND --- 16
Z COMMAND --- 16

SPECIAL EPROM’s --- 17

USING PROMOS COMMANDS IN A BASIC PROGRAM -------------- 18
SIMPLE SAMPLE PROGRAM --- 19
USING BASIC VARIABLES -- 19
SETTING UP A RAM BUFFER --- 20
ONE FURTHER POINT -- 20
WHERE'S PROMOS? --- 21
TROUBLESHOOTING --- 21

APPENDIX A- THE CONTROL WORD -------------------------------- 22

APPENDIX B- THE PROGRAM METHOD WORD ----------------------- 23

APPENDIX C- TABLE of CONTROL and PROGRAM METHOD WORDS

APPENDIX D- THE G COMMAND SCREEN DISPLAY

APPENDIX E- THE PARTS LIST

APPENDIX F- THE BLOCK DIAGRAM

APPENDIX G-THE PCB LAYOUT AND SCHEMATIC DIAGRAMS

INTRODUCTION

The acronym EPROM stands for Erasable Programmable Read Only Memory. It
refers to another of those electronic marvels that came out of INTEL Corp. in the mid
Seventies. A memory chip that the user can program to contain any sort of digital
information whatsoever. And even better, a chip that can be erased by simple exposure
to ultra-violet light and reused many times. With these abilities, it is no wonder that
EPROM's are produced in such tremendous quantities. The dollar volume is exceeded
only by that of dynamic RAM'S.

With the tremendous proliferation of types and sizes, programming an EPROM

became a very complicated undertaking. Many EPROM programming devices were
designed to handle just a single EPROM type; and those that could do more required
setting a multitude of switches or plugging in a 'personality module'. Some even
required a voltmeter to set up. Programming an EPROM could easily take an entire
afternoon. That unhappy situation suddenly changed with the introduction of the
PROMENADE C1.

By combining some sophisticated hardware with the power of an inexpensive

personal computer, the PROMENADE makes the job almost trivial. And with new
programming techniques, the PROMENADE cuts the time required to duplicate an
EPROM from many minutes to just seconds. With all of its features and capabilities, the
PROMENADE has set the standard for EPROM programmers all around the world. It
has been widely imitated, even copied exactly; but its most important attribute has never
been duplicated- VALUE.

But even the best products can be improved, and with the introduction of

PROMOS 2.0 the PROMENADE is made even better. Simple, yet powerful commands
for the manipulation of data in the computer and for moving that data to and from
EPROM'S, disk drives and the like give performance and ease of use that have never
before been achieved. Even better, these commands can be incorporated into BASIC
programs that let the user customize his system to any EPROM programming
application.

The user is strongly urged to read this manual carefully and to thoroughly get

familiar with the material. An hour or two spent this way will be repaid many times over.

JASON-RANHEIM COMPANY
Auburn, California
November, 1988

-1-

GETTING STARTED

With the power OFF, plug your PROMENADE into the user Port at the left rear of
your COMMODORE 64 or 128. Install the PROMOS 2.0 diskette in your 1541, 1571 or
1581 disk drive. Turn ON your computer. If you are in 128 mode, the software will load
automatically. If in 64 mode, type:

LOAD"PB",8,1 <CR>

The <CR> above means 'type a carriage return'.

You will shortly see a brief sign-on message and copyright notice. At this point,

your system is ready.

HANDLING EPROMS

EPROM's need to be handled with reasonable care if one is to avoid irretrievable
damage to them. They are very susceptible to static electricity. This can be a problem
in a cold, dry climate in the wintertime. Always discharge yourself by touching a
grounded object before handling them. The aluminum case of the PROMENADE itself
is convenient for this purpose. To install an EPROM in the PROMENADE socket,
RAISE the operating lever, drop the EPROM into place and then close the socket by
moving the lever down to the case as far as it will go. NOTE- EPROM's having 24 pins
(e.g. 2716, 2732) use the RIGHTMOST 24 socket positions. Twenty eight pin EPROM's
occupy the entire socket. MAKE SURE the orientation notch points to the LEFT as the
figure on the top of the cover indicates.

NOW TO INSURE PROPER ELECTRICAL CONNECTION to all pins of the

EPROM, move the EPROM from side to side slightly by forcing it with the thumbs. This
may take quite a bit of force. Doing this becomes habitual after a while. The objective
here is to have the contacts in the socket cut through any tarnish films which might
otherwise prevent proper operation.

HEXADECIMAL NOTATION

If you are already familiar with HEX notation, skip this section. If not, you will

need to spend a little effort at this point to aquatint yourself with a very useful idea.

In the world of EPROM's and computers, information is conveyed in little units
known as 'BITS'. A bit can have one of two values. The meaning we associate with
these values can be anything capable of expression as a 'binary' or two-valued entity.
For example, a statement can be either TRUE or FALSE.

-2-

A light is either ON or OFF. In your computer, a bit is represented by the voltage
on a wire: it is either HIGH (near 5 volts) or LOW (near 0 volts). The high value we
associate with the symbol '1' . The low value we associate with the symbol '0' . In order
to represent members of larger collections of objects, letters of the alphabet, for
example, or large numbers, binary digits must be grouped together.

Four binary digits taken together can represent 16 different objects, two to the 4th

power. Eight binary digits taken together form a unit called a 'BYTE' in computers. A
byte can stand for any one of two to the 8th power (or 256) different objects. Your
computer deals in 'BYTE' sized information units. Data flows from one part of your
machine to another along eight wires called the data bus in bytes.

In order to specify exactly what information is being accessed at a given instant,

your computer sends out an 'ADDRESS'. This address is a 16 bit binary quantity that
flows along 16 wires called the address bus . Since there are 16 address lines, two to
the 16th power, or 65536 unique addresses can be specified by your machine.

Now, instead of using binary numbers directly like your computer does, it is

customary to consider binary digits in groups of four. Each possible value of this group
is denoted by a symbol: the numbers from 0 to 9 plus the letters A through F. These
are called 'HEXADECIMAL' numbers. Accordingly, we have the following:

 BINARY HEXADECIMAL DECIMAL

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15
10000 10 16

-3-

And we can represent numbers of any size:

 11110000 F0 240
 11111111 FF 255
 100000000 100 256

 1111111111111 1FFF 8191
11101000101011010 1D15A 119130

And so on. It is common to see a '$' sign affixed to a hexadecimal number so

that the reader will not take it to be an ordinary decimal quantity. Or sometimes a
following 'h' does the same thing. So $1234 or 2345h are to be considered
hexadecimal numbers. In this manual, all numbers are in 'HEX' unless specifically
stated otherwise.

EPROM's

Now, consider for a moment the diagram of Figure 1. It shows the 'pin out' of

several commonly used EPROM'S. In use, the pins marked Q0 through Q7 are
connected to the data bus. The EPROM, when enabled to do so, outputs data on these
pins. Since there are eight output pins, the EPROM can output an entire byte at a time.
An EPROM is a 'byte-wide' device.

The pins marked A0 through A15 are address pins. The computer imposes a

binary address on these pins to specify which-location in the EPROM the data is to
come from. The lowest address is, of course, $0000, all address lines low. The highest
EPROM address depends on how many address pins there are. The capacity of an
EPROM is usually specified as a certain number of 'KILOBYTES'. A kilobyte is two to
the 10th power or $400 bytes, (1024 decimal). A '1k' EPROM like the 2758 must
therefore have 10 address pins. The following table gives the maximum EPROM
address for several common types.

TYPE CAPACITY HIGHEST ADDRESS

 2758 1k 3FF
 2716 2k 7FF
 2732 4k FFF
 2764 8k 1FFF
27128 16k 3FFF
27256 32k 7FFF
27512 64k FFFF

When the PROMENADE programs an EPROM, the desired EPROM address is

applied to the address pins, the data to be programmed into the EPROM at that address
is applied to the data pins, and various signals and voltages are applied to other pins as
required.

-4-

-5-

The user has to be concerned with only one of these other voltages. This is a
relatively high value called the PROGRAMMING VOLTAGE. There are three standard
programming voltages in general use: 12.5v, 21v, and 25 volts. As we shall see a little
later, the user must specify this voltage for the particular EPROM he is dealing with.

ENTERING PROMOS 2.0 COMMANDS

All of the various tasks you will want to accomplish using the PROMENADE will

be done by means of one or more PROMOS 2.0 commands. These commands consist
of a key letter followed by up to nine hexadecimal numbers called parameters. To
execute a PROMOS 2.0 command, simply type it on the screen. Edit it as required and
then type a carriage return.

Multiple parameters in your command may be separated by one or more spaces

or by (at most) one comma. You do not need to supply a '$' sign nor are you required to
supply leading zeros. The following examples of the PROMOS 'M' command will serve
to illustrate. This command is used to display the contents of computer memory on the
screen, and it will be described in detail later.

M0000 03FF
M0000,03FF
M0 3FF
M0,3FF
M 0 3FF
M 00 , 03FF

All of these forms are equivalent. PROMOS does not perversely require that you

type in an exact form as long as your meaning is unambiguous.

MULTIPLE COMMANDS

You may enter two or more PROMOS commands separated by colons on the
same command line. The commands will be executed sequentially in the order you
typed them. For example:

M2000,2040:12000,2040

It results in a hex display of computer RAM data from 2000 through 2040,

followed by an ASCII display of the same data.

MIXING BASIC AND PROMOS COMMANDS

You may mix PROMOS and BASIC commands together on the same command line.

They will execute in the order in which you typed them. For example:

-6-

Print "ZERO PAGE RAM":M0,FF:Print"END OF ZERO PAGE"

REMEMBER: ALL PROMOS 2.0 COMMAND PARAMETERS ARE ENTERED
AS HEXADECIMAL NUMBERS.

ERRORS

If you make a mistake typing in a PROMOS command, chances are you'll be

advised by the SYNTAX error message. If you fail to supply all the parameters required
by a command, an UNDEFINED FUNCTION error will result. If you input incorrect
hexadecimal numbers, an ILLEGAL QUANTITY error will be reported. Some PROMOS
commands report other errors as may be necessary.

PROMOS 2.0 COMMANDS

THE G COMMAND- Print command Glossary.

This isn't really a command at all. Type a G and a carriage return and a list of the

PROMOS commands and an example of each is printed on the screen. If you commit
only one command to memory, make it this one.

THE R (or £) COMMAND- Read EPROM data into computer memory.

By reading an EPROM, we mean transferring some or all of the information it

contains into the computer's memory. The key letter can either be R or £, the English
monetary symbol. Example:

R2000, 3FFF, 0, 6

The meaning of this command is: fill computer RAM from 2000 to 3FFF with data

from this EPROM, beginning at EPROM address 0000. The '6' is a parameter called the
CONTROL WORD. It is a number that tells the PROMENADE everything it needs to
know about the particular EPROM you are dealing with. In the example, 6 is
appropriate for the 2764A. A list of control words appears inside the back cover of this
manual. A detailed discussion of control words and what they mean is presented in
APPENDIX A. Another example:

£ 5000 BFFF 1000 E6

Here, we have used the £ symbol rather than R. The command does exactly the

same thing either way.

-7-

In this example, we are telling the PROMENADE to read a 27256 into computer
RAM from 5000 through BFFF, beginning at EPROM address 1000. E6 is the control
word for a 27256 programming at 12.5 volts.

CHECKSUMS and HASHTOTALS

When you execute the READ command as in the examples above, you will

notice that a 'CHECKSUM' and a 'HASHTOTAL' is printed on the screen as soon as the
operation is completed. The CHECKSUM is the low-order byte of the arithmetic sum of
all the data bytes read from the EPROM. The HASHTOTAL is the result of exclusive-or
of all bytes read with each other. These numbers can serve as a quick means of
identification of an EPROM, or as a means of checking the validity of the data itself.

WHERE TO PUT THE DATA

Notice that the READ command gives you complete freedom: you can read as

many bytes from the EPROM as you want, starting anywhere on the chip, and in
principle you can put them anywhere in computer memory. As a practical matter,
certain areas of computer RAM are off-limits because your computer must use them for
its own purposes. If your read command overwrites these areas, the computer will
crash.

Consider first the COMMODORE 64 or the 128 in 64 MODE: if you are not

running a BASIC program, then you are free to use computer RAM from 0800 through
DFFF. A BASIC program ordinarily resides in RAM starting at 0801. In a later section
we discuss the matter of using PROMOS commands in a BASIC application program.

In the case of the COMMODORE 128 in 128 MODE, we need to consider a

special PROMOS command which pertains only to the 128, the bank select command.

The B COMMAND- Select PROMOS RAM bank, (128 mode co mmand).

This command selects the computer RAM bank, 0 or 1, which will be used for
subsequent PROMOS operations. Example:

B1

Execution of this command causes PROMOS to use bank 1 RAM, PROVIDED the

RAM involved lies in the range 2000 through DFFF. Outside this range, bank 0 RAM
will be used. Using this command does not in any way affect the BASIC 7.0 'BANK'
command. PROMOS bank 1 will remain in use until you switch back to PROMOS bank
0. To do this, execute either B0 or just B. Example:

B1:R2000,5FFF,0,6:B0

-8-

Here, we combine the bank select commands and the read command. First we
switch to bank 1 RAM; then we read a 27128A into the range 2000 through 5FFF in
bank 1; then we switch back to bank 0 RAM.

In 128 mode, BASIC starts at 1C01 in bank 0. If no BASIC program is being

used, useable RAM in bank 0 starts at 1300.

HOW BIG A RANGE?

The question arises: How large must the memory range in the read command be
to insure that each and every Byte on the EPROM is included? Earlier, we presented a
table showing the largest EPROM address for EPROMs of various capacities. If we
start at address 0 on the EPROM and read each address to and including the highest
address, then we know we have read them all. A little reflection will show that all one
has to do is add this highest EPROM address to the chosen computer RAM start
address to obtain the necessary computer RAM end address. Some examples:

We want to read all of a 2732 (4k) EPROM into RAM starting at C000. Since the

EPROM address runs from 0 to FFF, the required read command is:

RC000,CFFF,0,E0

A 27256 (32k) is to be read into RAM starting at 4000:

R4000,BFFF,0,E6 does the job. 4000+7FFF=BFFF.

A 27128 (16k) is to be read into RAM starting at 3840:

R3840,783F,0,5 is what is needed.

THE M COMMAND- Display computer memory.

This is the command to use to view and alter computer RAM data. To illustrate
its use we execute the following:

MA000

And there appears:

>A000 3E 41 00 A9 20 FE 84 D0

-9-

Execution of this ‘M’ command causes the computer to display the specified
address followed by eight hexadecimal byte values, the data from locations A000
through A007. To display a memory range, from 2000 through DFFF, say, type:

M2000,DFFF

The screen fills and then scrolls rapidly as the data is printed. To stop the

display at any point, press the RUN/STOP key. To begin the display again at the point
where you stopped, type M alone and a carriage return.

Notice the 'M' command displays RAM data, not ROM or IO devices which may

overlay a particular address.

CHANGING RAM DATA

Suppose you want to change the data in memory somewhere. Just use the M
command to display that area, move the cursor into the display to the desired location,
type in the new hex value(s) and press RETURN on each altered line. RAM data is
changed accordingly. You can also change the address field. In this way you can
quickly copy data from one area of RAM to another.

THE I COMMAND- Display ASCII data.

 This command works the same way as the M command except that the display

shows printable ASCII characters rather than hex data. Thirty two characters appear on
each line. For example:

I6000,7FFF

Displays ASCII characters in the range 6000 through 7FFF. You cannot alter an

ASCII string by over typing and pressing RETURN.

THE F COMMAND- Fill computer RAM.

This command fills a specified range of memory with a specified data byte. For
example:

F2000,DFFF,FF

This command fills memory from 2000 through DFFF with FF characters.

THE T COMMAND- Transfer RAM data.

-10-

This command copies data in a specified range from one area of computer RAM
to another. By way of example:

T2000,2FFF,C000

This command transfers data from RAM in the range 2000 through 2FFF to C000

through CFFF. Another example:

T4000,40FF,4001

This command moves data from 4000 through 40FF up one address location.

THE C COMMAND- Compare computer RAM data.

This command causes the computer to compare the data in one range of
memory locations with that of another. The address of all locations where the data
differs is printed out. For example:

C100,1FF,4000

This command compares RAM data in the range 0100 through 01FF to data in

the range 4000 through 40FF. The addresses of all discrepant locations appear on the
screen.

THE H COMMAND- Hunt for byte data.

This command causes the computer to hunt for occurrences of a group of

specified data bytes. The address of each occurrence is printed on the screen. The
sought for group may be up to seven bytes long. For example:

H2000,BFFF,20,D2,FF

This command examines RAM from 2000 through BFFF for the byte sequence

20,D2,FF: 6502 code for JSR FFD2. Another example:

H1000,7FFF,52,41,4E,47,45 49,4D

This command hunts for a group of seven ASCII characters.

THE D COMMAND- Scan EPROM data.

The D command reads data from an EPROM and prints it on the screen as hex
data just as the M command does. Computer RAM is not affected. Example:

D0,1FFF,5

-11-

This command produces a screen display of all the data on a 2764. The first two
parameters are the starting and ending EPROM ADDRESSES of the range to be
displayed. The third parameter is the CONTROL WORD for the particular EPROM.
Another example:

D6000,7FFF,E6

This command scans the top 8k of a 27256.

THE A COMMAND- ASCII scan of EPROM data.

The A command works just like the D command except that the display is of
printable ASCII characters. For example:

A0,7FF,28

 In this example, we do an ASCII scan on all bytes of a 2716.

THE E COMMAND- Check EPROM for erased condition.

The data at all erased locations on an EPROM is FF; that is, all data bits are

ones. To check for this condition, use the E command. An example:

E0,3FFF,6

This command checks for FF at all locations on a 27128A. The EPROM
addresses of all un-erased locations are printed on the screen. Their total number is
also printed. The first and last addresses on the 27128A are 0 and 3FFF. The control
word is 6. Another example:

E800,FFF,EO

This command checks for the erased condition of the top half of a 2732.

THE P (or π symbol) COMMAND- Program EPROM from computer memor y.

The key letter for this command can be either P or (π symbol). The command
works the-same either way.

There are five parameters needed for this command: the STARTING and

ENDING computer MEMORY ADDRESSES defining where the information is to come
from, the STARTING ADDRESS on the EPROM specifying where we want the data to
go, the CONTROL WORD; and the last parameter is the PROGRAM METHOD WORD
(PMW for short).

-12-

The PMW is discussed at length in Appendix B. It tells PROMOS how you want
the programming to be done. Some examples:

P2000,3FFF,0,6,7

This command fills a 2764A completely with data from computer RAM in the

range 2000 through 3FFF. The EPROM is programmed from beginning to end. The
CONTROL WORD is 6; and we have used intelligent programming method #1 as
defined by the PMW of 7.

Notice that the P command gives you complete freedom. You can take

information from anywhere in computer RAM and put it anywhere on the EPROM.
Suppose you wanted to program just one byte on an EPROM:

P213A,213A,3456,5,A

In this case, the starting and ending RAM addresses are the same, 213A. The

EPROM address is 3456. The control word, 5 is for the 27128 and we have chosen A
for the PMW. This command takes a single byte of data at 213A and programs it into
EPROM location 3456 in the 27128.

The considerations of RANGE size are exactly the same as with the R command.

To be sure you are programming ALL of an EPROM; add the maximum EPROM
address to the computer RAM starting address to obtain the computer RAM ending
address. Some more examples:

Suppose you wanted to take the data from two 2764's and put it on a single

27128A. Here's one way to do it. First let's choose to use computer RAM from 2000
through 5FFF to contain the data. Read the first 2764:

R2000,3FFF,0,5

Now read the second:

R4000,5FFF,0,5

Now program the 27128A:

P2000,5FFF,0,6,6

That's all there is to it.

Suppose you wanted to read a COMMODORE Kernel ROM, make some
changes, then put the altered data on a 2764A. Here's how to do it: The Kernel ROM
in the C64 is compatible with the 68764 (8k) EPROM. The control word is 30. Read it
in:

-13-

π2000,3FFF,0,30

Use the M command to change the data in RAM as you wish it to be. Now
program the revised data into the 2764A:

P2000,3FFF,0,6,7

PROGRAMMING ERRORS

While programming an EPROM, PROMOS checks to see that the job is being

done correctly. If an error is detected, programming is stopped and you are advised
what happened by messages on the screen. For suggestions on determining the
source of the trouble, see the section on troubleshooting.

THE V COMMAND- Verify EPROM data.

The V command compares the data on an EPROM with data in computer

memory. It has two forms: the long form, with parameters exactly the same as in the R
command; and the short form which is just V alone with no parameters at all. The short
form uses the parameters from the most recent R or P command. The EPROM
addresses of all discrepant locations, the checksum and the hash total are printed on
the screen. Some examples:

V2000,3FFF,0,6

Here, we compare data from 2000 through 3FFF with the data on a 2764A.

P4000,BFFF,0,E6,6:V

Here, we have programmed a 27256 with data from 4000 through BFFF and have

followed with the short form of the V command.

COPYING EPROMS

The PROMENADE is a very efficient piece of production equipment. One can
quite easily program 250 2764's in an hour. The usual procedure is to read an EPROM
MASTER into RAM using the R command, then program the duplicates using the P
command. It isn't necessary to type a new P command for each copy. Just move the
cursor up to the P command line and press RETURN.

Here's a simple example of a command that programs 2764A's, verifies the data,

keeps track of the number of copies that have been made and prints it on the screen:

-14-

R2000,3FFF,0,6:N=0

This reads the master and initializes the count. Now:

P2000,3FFF,0,6,6:V:N=N+1:?:?"TOTAL COPIES:"N

THE S COMMAND- Save computer RAM.

This situation continually arises: You've read a ROM or an EPROM. Now you
want to save the data on disk so that you can make a copy later. The S command is
what you need. It causes a defined section of RAM to be saved to disk as a PGM file.
An example:

S"EPROM DATA",8,4000,BFFF

This command takes data from 4000 through BFFF and stores it on disk as the

program file called EPROM DATA. Experienced users will recognize this as the same S
command their monitor programs have provided them for years. But NOTE one
important difference. Monitor S commands require that you specify a range one byte
longer than what you really want to save. This is the case with the C128's built-in
monitor. With the PROMOS S command, you specify the range exactly.

There is one important restriction on the use of the S command in 64 mode: You

cannot save from the address range D000 through DFFF. This restriction does not
apply in 128 mode.

One further note for 128 users: If you want to save from bank 1, just use a prior B

command to set bank 1 RAM first. Another example:

£2000,2FFF,0,18:S"2532 DATA",9,2000,2FFF

Here, we read a 2532 and save the data to disk on drive 9 as a PGM file called

'2532 DATA'.

THE L COMMAND- Load program from disk.

Now, you have the data on disk. How do you get that data back into the
computer so an EPROM can be burned from it? The answer is the L command. An
example:

L"2532 DATA",9

This command loads the PGM file '2532 DATA' back into the same locations in

memory from where it was saved, namely 2000 through 2FFF, from device 9. On
completion of the load, PROMOS reports the load start address and the load end

-15-

address so you know where in RAM the data is. Oftentimes, it's a good idea to jot these
addresses down. As with the S command, you cannot load into the range D000 through
DFFF from 64 mode. In 128 mode, if you want to load the file into bank one RAM, first
set bank 1 with the B command.

There is one other important feature of the L command: you can specify your

own load-start address. This is mandatory if you want to load a PGM file whose load-
start address is unknown or if you want to load it someplace else. To specify your own
load-start address, just add it to your L command:

L"2532 DATA",9,6000

The load-start address of this file we know to be 2000. But we have forced the

data to be loaded at 6000 by means of this command.

This feature makes it very easy to merge separate PGM files into one.

THE Q COMMAND- Quit PROMOS.

Should you wish to disengage PROMOS, use the Q command. Just execute:

Q

and PROMOS is gone. You can re-enable PROMOS by executing the following

SYS:

SYS320

COMMODORE 128 users can switch to 64 mode using the G064 command, then
re-enable PROMOS using SYS320 from 64 mode. After a RESET, you can use
SYS320 to re-enable PROMOS in 128 mode without having to reload the program.

THE Z COMMAND- Zero the PROMENADE programming socke t.

This command sets the voltage at all pins of the C1 socket to (nearly) 0 volts so

EPROM's can be safely installed and removed. This is done automatically for the most
part. C128 users will notice that after a 128 mode LOAD or SAVE, the red light is left on,
indicating an energized condition. Here is where the Z command comes in. Execute
this command to reset the C1 socket.

-16-

SPECIAL EPROM's

There are EPROM's the PROMENADE can read and program but which require
special methods. Among these are the 27512, the 27513 and the 27011. We now
consider each of these in turn.

The 27512 is the standard 64k byte EPROM. It has 16 address pins as can be

seen in FIGURE 1. The 16th address bit is applied to pin 1. The PROMENADE cannot
use pin 1 as an ordinary address pin. Rather, it is normally pulled high by a pull-up
resistor. Some other means must be used to bring this pin low for reading and
programming the lower 32k of the 27512.

A crude, but simple and effective way to do this is to take a short length of 22

gauge stranded hook-up wire and ground one end by securing it under one of the
PROMENADE cover mounting screws. To access the low 32k addresses on the 27512,
insert the free end of your grounding wire into the programming socket along with pin 1
of the 27512, (Pin 1 is the one closest to the operating lever). To read or program the
upper 32k, simply remove the grounding wire.

Jason-Ranheim Company can install a switch to handle this more conveniently

for a nominal charge. Contact our sales department.

The 27513 and the 27011 are 'page-addressed' EPROMs. They have an internal
bank switching register which selects one 16k 'Page' of the EPROM at a time. The
27513 looks to the outside world like four 27128A EPROM'S; the 27011 looks like eight.

To read or program the 27513, use the control word 4XE2 where you substitute

for X the number from 0 to 3 of the page you wish to read or program. For example:

R2000,5FFF,0,40E2

will read the lowest 16k page of the 27513 into RAM. Another example:

P4000,7FFF,0,43E2,6

will program page 3 of the 27513.

The 27011 works the same way. Use the control word 4X06, where X is the
number from 0 to 7 of the page you wish to read or program. For example:

P8000,BFFF,0,4506,6

This command programs page 5 of a 27011 with data from computer RAM from

8000 through BFFF.

-17-

Again:

£A000,DFFF,0,4706

reads page 7 into the specified range.

USING PROMOS COMMANDS IN A BASIC PROGRAM

PROMOS commands can be used in a BASIC program just like any regular
BASIC command. Of course, PROMOS must be loaded first and active or your BASIC
program will not run.

Some of the commands work a little differently from a running program as

compared with direct mode:

First, control messages such as 'SEARCHING FOR', 'PROGRAMMING', etc. are
not printed unless you enable then by setting bit 7 at address 9D high. See the
PROGRAMMERS REFERENCE GUIDE for details.

Those commands which from direct mode report results on the screen, such as

R, P, L, S, V, C, H, and E, do not do so when executed from a running program.
Rather, certain results are made available in low RAM locations as detailed below.
Your BASIC program can 'PEEK' these locations to make use of this information.

In general, address A5 (165 decimal) reports errors. If an error is detected, A5

will contain FF, otherwise it will be 0. A6 and A7 will report an address in low-high order,
with the significance described below. A8 and A9 report the appropriate checksum and
hash total respectively of the data in the address range involved in the command.

L command A5- 00 = Load ok. FF = load failed.

A6,A7- Address of highest byte loaded.
A8- Checksum for data loaded.
A9- Hash total for data loaded.

S command A5- 00 = Save ok. FF = Save failed.

A6,A7- Address of highest byte saved.
A8- Checksum for data saved.
A9- Hash total for data saved.

R (or £) A6,A7- Address of highest EPROM byte read.

A8- Checksum for data read.
A9- Hash total for data read.

P (or π symbol) A5- 00 = PGMing ok. FF = PGMing failed.

A6,A7- EPROM address at failure.
A8- Checksum for data programmed.
A9- Hash total for data programmed.

-18-

V command A5- 00 = verify ok. FF = verify failed.
A6,A7- EPROM address at failure.

C command A5- 00 = COMP ok. FF = COMP failed.

A6,A7- RAM address at lowest failure.
A8- Checksum of compared data.
A9- Hash total of compared data.

H command A5- 00 = No occurrence. FF = Bytes found.

A6,A7- RAM address of first occurrence.

E command A5- 00 = EPROM erased. FF = Not erased.
A6,A7- EPROM address of lowest un-erased byte.

Note that the C command generates a checksum and a Hash total. You can use

a 'dummy' C command to generate these quantities for any range of RAM data. For
example:

C2000,DFFF,2000

compares RAM from 2000 through DFFF with itself. In the process, the checksum

and hash total over that range are generated and reported.

SIMPLE SAMPLE PROGRAM

10 PRINT"INSTALL 27256 IN PROMENADE SOCKET."
20 PRINT:PRINT"TYPE A CARRIAGE RETURN WHEN READY."
30 GETA$:IFA$<>CHR$(13)THEN30
40 £4000,BFFF,0,E6
50 S"27256 DATA",8,4000,BFFF:ETC.

USING BASIC VARIABLES

PROMOS commands would be of little utility in a BASIC program if they could

not make use of variable data. The PROMOS L and S commands accept a string
variable for the file name. Any numeric parameters that you want to express as a
variable- addresses, control words, device numbers, etc. MUST USE the INTEGER
variable form. These are numeric variables with a '%' sign suffix. Regular floating point
variables will not work. REMEMBER, numeric BASIC variables are always DECIMAL
quantities. Here's a simple example of the use of variable quantities in a program:

10 NM$="MY FILE":DN%=8:LS%=8192:REM DEFINE PARAMETERS
20 LNM$,DN%,LS%:REM LOAD "MY FILE" STARTING AT $2000 FROM DEVICE 8.
30 ES%=0:CW%=5:PM%=7:REM DEFINE PARAMETERS FOR PROGRAMMING.
30 LE%=PEEK(166)+256*PEEK(167):REM CALC LOAD END ADDRESS.
40 PLS%,LE%,ES%,CW%,PM%:REM PROGRAM 2764 EPROM.

-19-

50 IFPEEK(165)=255THEN4000:REM REPORT PROGRAMMING ERROR.
60 PRINT"PROGRAMMING OK."
70 V:REM VERIFY ONCE AGAIN.
80 IFPEEK(165)=255THEN4020:REM REPORT VERIFY ERROR.
90 PRINT"VERIFY OK.":ETC, ETC....

SETTING UP A RAM BUFFER

Let's say you're using a 64 mode BASIC application program and you want to set

aside a large RAM buffer for moving data to and from EPROM's and disk that you're
sure BASIC will not intrude upon. Here's a suggestion. Early in your program, execute
the following BASIC statement:

10 POKE55,0:POKE56,64:CLR

This confines your BASIC program to the 14k from 0801 through 3FFF. Now, you

have 32k from 4000 through BFFF for your RAM buffer; and 8k from C000 through
DFFF to use as a utility area for ML programs, etc.

ONE FURTHER IMPORTANT POINT

A decimal address of 32768 must become a negative number when expressed

as a numeric variable. This number will decrease to -1 at 65535. This is of concern
only for addresses above 7FFF. Examination of the following table will give you an idea
of how to handle this.

DESIRED DECIMAL VALUE NUMERIC VARIABLE

 HEX ADDRESS EQUIVALENT EQUILAVENT

1000 4096 4096
2000 8192 8192
4000 16384 16384
7FFF 32767 32767
8000 32768 -32768
8FFF 36863 -32673
9000 36864 -32672
9FFF 40959 -24577
A000 40960 -24576
AFFF 45055 -20481
B000 45056 -20480
BFFF 49151 -16385
C000 49152 -16384
CFFF 53247 -12289
D000 57248 -12288
DFFF 57343 -8193

-20-

Here's a BASIC statement that converts a DECIMAL address (DA) from 0 to 65535
into the necessary NUMERIC VARIABLE equivalent (NV%):

100 NV%=DA+65536*(DA>32767)

WHERE'S PROMOS?

As you use the M command to browse through memory, you come across

nothing resembling a sizable machine language program. So where's PROMOS? It's
tucked away in RAM under the Kernel at E000. Operating from there, it leaves
everything else available to you. There are a few bytes of code well down on the stack
which take care of switching things in and out. In 64 mode, PROMOS hooks in through
IGONE. In 128 mode, ICRNCH is taken over as well.

TROUBLESHOOTING

The frustrations that can arise programming balky EPROM's can often be

avoided by making sure of a few things:

Make sure your EPROM is erased. Use the D, A or E commands for a quick
check.

Make sure your EPROM is seated properly in the socket and is making contact at

all pins.

Make sure your programming command is correct. Especially check the
CONTROL WORD. If you use an incorrect one you can destroy your EPROM.

Make sure your PROMENADE is making good contact with the user port

connector. The board-edge surfaces may need cleaning. An easy way to do this is to
go over them lightly with a pencil eraser.

Make sure your power supply is in good shape. Commodore 64 power supplies

have a tendency to get tired after a while.

You may wish to try a modified programming method that turns off Vpp during
read-back as discussed in Appendix B.

-21-

APPENDIX A- THE CONTROL WORD

The control word determines the way the PROMENADE works in dealing with a
particular EPROM. The PROMOS 2.0 CW is actually a 16 bit quantity. The low byte is
particularly important. The low eight bits control things as follows:

BITS 1,0 00- Set Vpp to 25 volts.

01- Set Vpp to 21 volts.
10- Set Vpp to 12.5 volts.
11- Set Vpp to 5 volts.

BITS 3,2 00- Apply Vpp to pin 22.

01- Apply Vpp to pin 1.
10- Apply Vpp to pin 23.
11- Set pin 1 low when Vpp is on.

BITS 5,4 00- PGM pulse at pin 27.

01- PGM pulse at pin 22.
10- PGM pulse at pin 20.
11- No PGM pulse required.

BIT 6 0- No action at pin 20 on read.

1- Invert pin 20 level on read.

BIT 7 0- Set standby level on pin 20 low.
1- Set standby level on pin 20 high.

The upper byte works as follows:

BITS 5,4,3,2,1,0 Select particular page of page mode

EPROM. Up to sixty four 16k pages.

BIT 6 0- Page mode indicator off.
1- Page mode indicator on.

BIT 7 Not used.

-22-

APPENDIX B- THE PROGRAM METHOD WORD

The program method word tells PROMOS how you want the programming done.
You have some latitude. If you check the TABLE of RECOMMENDED CONTROL and
PROGRAM METHOD WORDS inside the back cover, you'll see a 'standard method'
and three 'intelligent' methods. We examine these in greater detail here.

STANDARD PROGRAMMING

In standard programming, the programming pulse applied to the EPROM is of
constant duration, usually about 50 ms (milliseconds). This is always a time-consuming
method. A 2764 takes about 7 minutes to program this way. For PHW's from 0 to 3,
PROMOS uses Pulse duration’s as follows:

PMW PULSE DURATION

 0 6 ms.
 1 12 ms.
 2 24 ms.
 3 48 ms.

INTELLIGENT METHODS FOR PROGRAMMING

Intelligent methods for programming EPROM's have been developed which can
greatly reduce the time required. These methods in effect 'test' the EPROM as the
process goes on. It works like this: The address and data are set up and a short
duration pulse is applied. The EPROM is then read back and the data is compared. If
the data doesn't 'verify', then another pulse is applied and so on. Programming time is
accumulated. At some point the data 'sticks' and a positive verification is obtained.

At this point, another longer 'margin' pulse is applied which is proportional in

duration to the sum of the preceding pulses. The data is verified once again, and the
programmer then moves on to the next location.

Intelligent #1- Developed by Jason-Ranheim, this method has been widely

copied. It is the fastest way to program an EPROM. Programming starts with a short .1
ms pulse which doubles in duration with each failure to verify. The margin pulse is
equal in length to the sum of all preceding pulses.

Intelligent #2- In this method, short pulses of equal duration are applied. The

margin pulse is 3 times the total accumulated pulse time. If after 25 ms of short pulses,
a location still does not verify, programming stops and the failure is reported.

-23-

Intelligent #3- In this method, the margin pulse is 4 times the preceding total
accumulation. If after 15 ms of pulses verification has not been achieved, a 60 ms
pulse is tried. If the location now verifies, programming moves on. If not, the EPROM
has failed.

For any of the Intelligent programming methods, the EPROM Supply (VCC) is set

to 6 volts.

PMW's from 4 to F have the meanings given in the following table:

PMW INT METHOD TEST PULSE TOTAL ACCUMULATION*

 4 1 variable 12 ms.
 5 1 variable 25 ms.
 6 1 variable 50 ms.
 7 1 variable 100 ms.
 8 2 .25 ms. 75 ms.
 9 2 .50 ms. 75 ms.
 A 2 1.0 ms. 75 ms.
 B 2 2.0 ms. 75 ms.
 C 3 .25 ms. 100 ms.
 D 3 .50 ms. 100 ms.
 E 3 1.0 ms. 100 ms.
 F 3 2.0 ms. 100 ms.

* = the maximum time that can be accumulated at a location before an error is

reported.

 If you add $40 to the PHW, that is set bit 6 high, the programming is altered in

this respect: The PROMENADE turns off Vpp before attempting to read back the
EPROM. This slows down programming; but it is advisable in few cases. For example:

PC000,C7FF,0,28,47

This command programs a 27C16 with data from C000 through C7FF. Another

example:

 P4000,BFFF,0,E6,46

This programs an OKI 27256 with the specified data.

-24-

This scanned document is not intended to defraud the original author or infringe
on any copyrights. It was only done to support an otherwise unsupported Commodore
accessory. Since the manufacturer no longer builds, sells or in any way profits from this
hardware or software, it is up to the users themselves to help each other with whatever
it takes to keep a useable product alive as long as possible. It is in that spirit of co-
operation that this document is made available to end users at no charge.

**

APPENDIX C

PROMENADE C1 with PROMOS 2.0 Operating System Softw are

TABLE of CONTROL and PROGRAM METHOD WORDS

EPROM PGM CONTROL PROGRAM METHOD WORDS
TYPE VOLTAGE WORD STD I#1 I#2 I#3

2758 25 28 3 7 A E
2516 25 28 3 7 A E
2716 25 28 3 7 A E
27C16 25 28 43 47 4A 4E
2716B 12.5 2A NR 46 4A 4E
2532 25 18 3 7 A E
2732 25 E0 3 7 A E
2732A 21 E1 3 7 A E
2732B 12.5 E2 NR 46 4A 4E
2564 25 14 3 7 A E
2764 21 5 3 7 A E
27C64 21 5 3 7 A E
2764A 12.5 6 NR 6 A E
27128 21 5 3 7 A E
27128A 12.5 6 NR 6 A E
27256 12.5, 21 E6, E5 * NR 6 A NR
27C256 12.5, 21 E6, E5 * NR 6 A NR
27512 12.5 E2 ** NR 6 NR NR
27C512 12.5 E2 ** NR 6 NR NR
27513 12.5 4XE2 ** NR 6 NR NR
27011 12.5 4X06 ** NR 6 NR NR
68764 25 30 NR 46 4B 4F
68766 25 30 NR 46 4B 4F
68769 25 30 NR 46 4B 4F
2815 21 39 3 6 B F
2816 21 39 1 7 NR NR
X2804A 21 39 1 NR NR NR
X2816A 21 39 1 NR NR NR
X2864A 21 7 1 NR NR NR
48016 25 28 2 5 9 D
5133 21 5 3 NR NR NR
5143 21 5 3 NR NR NR
5213 21 39 2 4 9 D
52B13 5 7 NR 4 NR NR
52B23 5 7 NR 7 NR NR

NR- NOT RECOMMENDED.
*- Be SURE to use the CORRECT CW corresponding to the PGM

VOLTAGE required by your EPROM.
**- Requires special programming. See manual for details.

APPENDIX D

 COMMAND EXAMPLE

A EPROM ASCII DUMP A0,1FFF,5
B SELECT RAM BANK B1
C COMPARE RAM C2000,DFFF,E6
D EPROM HEX DUMP D4000,5FFF,E6
E EPROM ERASE CHECK E0,3FFF,6
F FILL RAM F2000,DFFF,FF
G GLOSSARY G
H HUNT FOR BYTES H2000,9FFF,20,D2,FF
I ASCII RAM DUMP IA000,A3FF
L LOAD FROM DEVICE L”A$”,8,2000
M HEX RAM DUMP M0,1FF
P PROGRAM EPROM P4000,BFFF,0,E5,7
Q QUIT PROMOS Q
R READ EPROM R2000,5FFF,0,6
S SAVE TO DEVICE S”DATA”,8,4000,BFFF
T TRANSFER RAM T2000,3FFF,4000
V VERIFY EPROM V4000,5FFF,0,6
Z ZERO PROMENADE Z
£ SAME AS R £4000,BFFF,0,E6
π SAME AS P πC000,DFFF,0,6,A

Above is the G COMMAND screen display

TYPE CAPACITY HIGHEST ADDRESS

2758 1k 03FF
2716 2k 07FF
2732 4k 0FFF
2764 8k 1FFF
27128 16k 3FFF
27256 32k 7FFF
 SPECIAL EPROMS
27512 64k FFFF
27513 4x16k (64k) 3FFF in 4 pages (0.5meg)
27011 8x16k (128k) 3FFF in 8 pages (1meg)

APPENDIX E

PARTS LIST

IC’S

2EA U1,U2 LM723 14 PDIP VOLTAGE REGULATOR
1EA U3 LM324 14 PDIP QUAD OP AMP
1EA U9 74LS00 14 PDIP 2-INPUT NAND GATE
1EA U6 7406 14 PDIP HEX INV BUF W/ HV/OPEN COLLECTOR
1EA U4 74LS86 14 PDIP QUAD 2-INPUT EXCLUSIVE OR-GATE
1EA U7 74LS139 16 PDIP DECODER/DEMULTIPLEXER
3EA U5,U8,U10 74LS374 20 PDIP OCTAL D-TYPE FF W/TRI-STATE

DIODES

13EA D1-D5,D9-D16 1N4002 100V 1A RECTIFIER DO-41
1EA D8 1N4739 9.1V 1 WATT ZENER DO-41 *
2EA D6,D7 1N4740 10V 1 WATT ZENER DO-41 *

LED’S

1EA LED1 3MM GREEN
1EA LED2 3MM RED
1EA LED3 3MM AMBER/YELLOW

CAPACITORS

1EA C3 220µF,25V ELECTROLYTIC RADIAL
1EA C2 330µF,25V ELECTROLYTIC RADIAL
2EA C1,C4 470µF,16V ELECTROLYTIC RADIAL *
7EA C5,C7,C9 0.1µF,100V CERAMIC RADIAL, 0.1” SPACING
 C10,C11,C14,C16
5EA C6,C8,C12 .001µF,100V CERAMIC RADIAL, 0.1” SPACING
 C13,C15

RESISTORS

2EA R1,R2 3.0Ω,5%,¼W AXIAL LEAD
6EA R3,R4,R5 330Ω,5%,¼W AXIAL LEAD
 R7,R9,R10
4EA R8,R19,R21 3.9KΩ,5%,¼W AXIAL LEAD
 R23
1EA R6 10KΩ,5%,¼W AXIAL LEAD
7EA R15,R16,R17 47KΩ,5%,¼W AXIAL LEAD
 R18,R20,R22,R24
1EA R12 4.53KΩ,1%,¼W AXIAL LEAD
1EA R13 7.87KΩ,1%,¼W AXIAL LEAD
1EA R14 21.5KΩ,1%,¼W AXIAL LEAD
1EA R11 43.2KΩ,1%,¼W AXIAL LEAD

SOCKET CONNECTOR

1EA 28 PIN ZIF 1EA 12/24 CARD EDGE FEMALE

* = SEE PAGE FOLLOWING THE BLOCK DIAGRAM

APPENDIX F

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

DD DD

DD

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDDDDDDDDDDDDD

D D

DD D

723

324

7406

LS86

LS139

LS00

LS374

LS374

LS374

++ + +
470uF 16V 330uF 25V 470uF 16V220uF

25V

C

C C

C

CC

C

C

C

CC

C

PROMENADE C1

723

324

723 723

LS86

LS139

LS00

28-PIN ZIF

12/24 CARD EDGE

7406

LS374

LS374

LS374

BLOCK DIAGRAM

D1
D2
D3
D4
D5

D6
D7
D8
D9
D10

C8C6

C7

R
3

R
4

R
5

R
6

R
7

D11 D12 D13

D

R
8

R
9

R
1
0

R
1
1

R
1
2

R
1
3

R
1
4

R
1
5

R
1
6

R
1
7

R
1
8

D14 D15 D16

R
1
9

R
2
0

R
2
1

R
2
2

R
2
3

R
2
4

U3

U6

U4

U7

U5

U8

U9 U10

C1 C2 C3 C4

C5

C9

C10

C11 C12

C13

C14 C15

C16

LED1

LED2

LED3

R1R2

U2 U1

The ZENER diodes (1N4739 and 1N4740 rated at 1W) get hot during operation. I

have replaced the diodes on my programmer with a higher rated diode (1N5346B and
1N5347B rated at 5W). Also raise them up off the board as much as possible, the leads
act as heat sinks.

The 470µF 16V electrolytic is under rated. I have replaced mine with a 470µF 25V

electrolytic.

The PCB layout labeled OFFSET was created for use on the C128/128D. It will allow

the programmer to be inserted without having to remove the RGBI connector. This will
allow the use of the 80-COL screen.

The OFFSET layout uses a right angle edge card connector. That is the only

difference (in parts) from the original programmer.

In the SPECIAL EPROM’s section of the manual (page 17) paragraphs 2 and 3,

explains how to program a 27512 EPROM. In order to read/program the lower half
(32K) of the EPROM you must manually ground pin 1 at the programming socket. To
read/program the upper half you must remove the ground, which is the normal
programmer state.

Notice on the schematic near the ZIF socket, there is a jumper (J2) that will ground

pin 1 when needed. It has been added to the Printed Circuit Board layout also in case
you make your own PCB.

If you have any questions you can reach me at:
EMAIL: newbury@planetkc.com

Daniel C. Newbury

APPENDIX G

Top and Bottom View

Top Trace View

Bottom Trace View as seen from Bottom

Top and Bottom View with C128 Offset

Top Trace View with C128 Offset

Bottom Trace View as seen from Bottom with C128 Offset

